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SECTION I
INTRODUCTION

\Jhen an electromagnetic wave impinges on intersecting conductors like
the wings and fuselage of an aircraft, currents and charges are induced on
all surfaces with distributions that depend on the shape and dimensions of
the conductors relative to the wavelength and on the angle of arrival and the
polarization of the incident vector field., In general, the surface currents
are determined by Maxwell's equations sutject to the boundary condition that
the tangential component of the electric field vanish on all of the (perfect-
ly) conducting surfaces. A usually convenient formulation of the mathemati-
cal boundary-value problem is in terms of integral equations for the compon-
ents of the vector surface density of current. Except in special cases like

the infinitely long cylinder, these equations are coupled.

In order to obtain a qualitative understanding and derive quantitative
information about the distributions of current on intersecting conductors, it
is expedient to study first conductors with simple shapes, specifically, in-
tersecting tubular cylinders for which fairly complete theoretical and exper-~
imental information is available over a wide range of electrical lengths and
radii. Furthermore, a cylinder is a good approximation of the fuselage and
its open tubular end resembles an open nose covered hy a radome. The winps
are better approximated by flat plates than by tubular cylinders, but no
theory is available for the conducting strip of finite length. Vowever, a
theoretical and experimental study of intersecting tubular cylinders can be
correlated with an experimental studv of a tubular cvlinder intersecting with
a flat plate when the axial and transverse dimensions are comparable. Since
an electromagnetic pulse consists of a spectrum of frequencies, and resonances
that yield the greatest amplitudes in the induced currents and charges occur
at specific frequencies, it is essential to obtain detailed information about
the single-frequency behavior of the currents and charges on single and in-

tersecting conductors.

Let one of the intersecting tubes be oriented along the z-axis, the
other along the x-axis with their junction, the origin of rectangular coordi-

nates, at the point of intersection of the axes of the cvlinders, as shown in

S b e .l e o el Rl




Fig. 1. Instead of allowing the incident plane wave to travel in a completely
arbitrary direction, it is advantageous to have its propagation vector or wave
normal E be perpendicular to the x-axis but with -K at an arbitrary angle 0
with respect to the positive z-axis, as indicated by (a) in Fig. 1. Further-
more, ﬁ(i) (which is always in the plane of the wave front and perpendicular
to ﬁ) may be rotated by an arbitrary angle ¥ with respect to the yz~plane.

It follows that

-ikz cos 0

Ez(i) (2) = -Eéi) cos ¢ sin O e (1la)
(1) _ (1) _.
E, E, ~ sin ¢ (1b)
with the time dependence e_iwt = ejwt (j = -i). (The time dependence e’lmt

is usual in the field of scattering and the determination of surface currents

on obstacles. Similarly, ejwt

is customary in circuit theory and thin-wire
antenna theory. Each convention will be used in the appropriate context.
With the definition j =.-i one form is readily converted into the other.) In
Eqs. (la) and (1b), Eél) is the magnitude of the incident electric field at
the origin of coordinates. The horizontal tube is in the plane of the wave
front and experiences a tangential electric field with the same amplitude and
phase along its entire length; the vertical tube experiences a tangential
electric field that is constant in amplitude but varies linearly and progres-
sively in phase from one end to the other. When ¢ = 0, the electric field
has no component along the horizontal tube and currents in it are excited en-
tirely by capacitive coupling to the vertical wire and by charges maintained
at the junction. When 0 = n/2, the field is normally incident as indicated
by (b) in Fig. 13 with ¥ = 0 the electric field is parallel to the vertical
tube, with ¢ = 7/2 it is parallel to the horizontal one.

The currents and charges on the conducting surfaces of intersecting
tubes of any radius are governed by integral equations derived from the
boundary condition Et = 0. The continuity of Bn along the surfaces requires
it to vanish at the bottom of each of the grooves that form the junction con-
tours between the horizontal and vertical tubes. As a consequence, the sur-
face density of charge n (which is proportional to Fn) must also vanish there
and with it the component of current along each groove. This means that the

>
surface density of current K crosses each pgroove at right angles.
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In order to understand the currents and charges on intersecting cylin-
ders, it is advantageous to review first the axial and transverse distribu-
tions of their surface densities on each tube when isolated, that is, ﬁ(e,z)
and n(8,z) on the vertical cylinder extending from z = ~h to z = h in an E-
polarized field, i(e,x) and n(8,x) on the horizontal tube extending from x =
-% to x = % in an H-polarized field. (Note that ® is the local angular co-
ordinate around either the x or z axis with 8 = 0° at the center of the
shadow in each.) It is convenient to examine tubes with electrical half-
lengths kh (or k%) in three ranges, viz.,, kh = =, 1 < kh < =, and kh < 1.

For each range an important special case is the low-frequenev or electrically

thin range with ka << 1,

The theoretical determination of the currents and charges on tubular
cylinders with unrestricted length and radius has been accomplished only with
a normally incident plane wave. Since an understanding of the currents and
charges on intersecting cylinders depends on the availahility of theoretical
data for isolated cylinders, the case of normal incidence with E-polarization

is considered first. For it the incident electric field is g(1) = Iinl);

it is parallel to the vertical cylinder that extends from z = -h, to z = h

: 1 2°
The associated magnetic vector is §<l) = IxBii)- it lies along the horizontal

cylinder that extends from x = -ll to x = 22. The radii of the tubes are
initially assumed to be the same and given by a. With the time dependence
e-imt, E(i)(y) - E(i) eiky _ E(i) eiko cos 8’ B(i)(y) - F(i)(y)/c or R(i)(y)
(1) z 20 z0 . bl z X

= Ez (y)/Z0 where ¢ = 3 x 10" m/sec, ZO»= ;EOn ohms, and 0,8 are cvlindrical
coordinates, The propagation vector is k = lvk' Hote that the center of the
illuminated side is at 6 = 180°, the center of the shadow at © = 0°, and the
shadow boundaries at 6 = 90° and 270°. The dimensions of aircraft and the
frequencies in an electromagnetic jpulse make electrical radii in the range
0.01 < ka < 2 and arm lengths kh from several wavelengths to verv small frac~
tions of a wavelenpth of interest. Two important ranges of the electrical
radius are ka < 0.1 and ka > 0.1; the first of these has two subranges de-

fined by ka < 0.1, kh > 1 and ka < 0.1, kh < 1,

10




SECTION II
THE INFINITELY LONG CYLINDER; kh=x

For infinitely long cylinders the currents induced by E-polarized and H-
polarized fields are mutually independent and can be obtained from separate
integral equations. This means that an arbitrarily incident field can be re-
solved into E- and H-polarized components and the currents induced by each
determined separately and then combined. When kh = , the integral equations
for the currents are obtained from the boundary condition Ec =0 at p = a,

0 <8 <2mr, -» <2z <o, For E~polarization along the z-axis, Ke(e) = 0 and

Kz(e) satisfies the equation:

(1) _ika cos 8 Zm
E.) e 2 € + iwn,a [ K_(8')G(a,83a’,8') d6' = 0 (2a)
z0 0 0 2

For H-polarization along the x-axis, Kx(e) = 0 and xe(e) satisfies the equa-

tion:

27 2
3 o(1) _ika cos 6 ' 3 at at '
3 (Bxo © ] - upa é Kg(8") [ 55557 CloaB3p 5000 ] o v, 487 = 0

(2b)
2

In Eqs. (2a,b), G(p,850",8") = (i/)R{V (kR) with R = [p? + 0'% - 205"

x cos(0 = e')]l/z. With Eii) =1 V/m and with € = 1, m = 0; € = 2, m# 0,

the eigenfunction solutions are:

E-polarization:

K,(0) = (2/nzgka) § e i" cos mo/n‘D (ka)

m=0
= A+ B cos 8§ + C cos 20 +D cos 36 + ... &)
Kg(8) =0, n(8) =0 @)

H-polarization:

(2/wzoka) Z cnim-l cos me/H(l)'(ka)
m-o N m

Ke(e)

= AH + B._cos 8 + C,, cos 20 + D,

H H ; cos 36 + ... (5)

L}
(]

Kx(e) , en(9) = (1/ka)axe(e)/ae

11
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= -(i/ka)[BH sin 8 + 2C, sin 28 + ...] (6)

The complex Fourier coefficients A, B, ..., and A BH’ .ssy are functions of

H’
ka. Their numerical values for five values of ka are in table 1. When
ka < 0.1, small argument approximations of the llankel functions give: Kz(e)
= A+ BR cos 0; xe(e) = AHR + iBHI cos B where A = AR + iAI = (Z/ﬂzoka) ¥
{1 - (24/m)[n(2/ka) + Y]} with v = 0.577, B, = -2/2, = =5.30 x 10-3 A/v,

=3
Ar -1/20 -2.65 x 10 ~ A/V, and Bur

tion the rotationally symmetric, zero-order current [Kz]0 = Iz/2ﬂa = A in-

= -2ka/20. Mote that with E-polariza-

creases rapidly in amplitude with decreasing ka while the first-order current
L 2 (i)

R 9 = e = - e = -

[l\z( )]1 By cos ( 2/ZO)cos znx

[Kz(e)]1 consists of equal and opposite axial currents respectively on the

cos 8 is independent of ka.

illuminated and shadowed halves of the cylinder. The phase relations are
such that Kz(e) is increased on the illuminated side, decreased on the sha-
dowed side as shown in solid lines in Fig. 2. As ka is increased from 0.1 to

1, the coefficients C. and DR in Eq. (3) become significant and modify the

I
shape of the curves. Uith H-polarization, the current with ka < 0.1 consists

predominantly of a rotationally symmetric circulation around the tube given

_ - - D
by [Ke]o = A -1/20 Hy

increased from 0.1 to 1, the coefficients B

as shown in broken lines in Fig. 2., As ka is

p = Bup ¥ 1By Gy = Cp * Gy

and DHR become significant and the shape of the graphs changes from a hori-
zontal line to a curve with a maximum at 6 = 180°, Note that when ka < 0.1,
Kz(e) induced by the E-polarized field with E(i)

Ke(e) induced by an equal H-polarized field with E

= 1 V/m is much greater than
Dy 21 V/m. The
z X 0

two become comparable when ka > 0,5.

With E-polarization, the zero-order part of Kz(e), viz., [K = A, is

]
rotationally symmetric, the first-order part [Kz(e)]1 = B cos B isoequal in
magnitude and opposite in direction on the illuminated and shadowed halves as
in a balanced, two-conductor transmission line; the second-order part repre-
sented by C cos 20 is equal and codirectional in the illuminated and shadowed
quadrants centered respectively at 8 = 180° and 0°, equal and oppositely di-
rected in the quadrants centered at 6 = 90° and 270° as in a balanced, four-
conductor line. Uith H-polarization, the zero-order part of K,(®) represented
by AH is a current that circulates around the cylinder with constant amplitude

and phase; the first-order part represented by BH cos A 1is a current that

12




Table 1

FOURIER COEFFICIENTS IN mA/V FOR INFINITELY LONG CYLINDER; E:i)= 1 V/m

E-POLARIZATION

Kz(e)-A+Bcoa0+(‘,c0520+nc0038+£con 48 + ...

4

a A= Ag+ A BeB +48 [ Coc +1C | D= +10 |EwE 418
0.01 | 16.83 + 150.59 { -5.30 + £0.00 | 0.00 - 10.03 | 0,00 + 10.00 | 0.00 + 10.00
0.05 | 6.86 + 113.60 | -5.28 + 10.01 | 0.00 - 10.13 | 0.00 + 10,00 | 0.00 + 10.00
0.10 | 5.03 + 17.74 | =5.23 + 10.046 | 0.00 - 10.26 | 0,01 + 10.00 | 0.00 + 10.00
0.50 | 2.94 + 11.39 | ~4.47 + 10.74 | -0.01 - 11,24 | 0,16 + 10.00 | 0.00 + 10.01
1.00 [ 2,18 + 10.25 {-3.28 + 11.85 | -0.14 - 12.04 | 0.58 + 10,00 | 0.00 + 20.10
H-POLARIZATION
Ke(e) = Ay + By cos 8 + Cp, cos 20 4 ...
ka ) Ay=AgptiAyr ) By BuptiByy | Cu=Curt iChr | Dy Dyp* 041 | Ey~ Hrt 15y
0.01 | -2.65 + 10.00 | 0.00 - 10.05 | 0.00 + 10.00 | 0.00 + 10.00 | 0.00 + 10.00
0.05 | -2.64 + 10.01 | 0.00 - 10.27 | 0.00 + £0.00 | 0.00 + 10.00 | 0.00 + 10,00
0.10 | -2.61 + 10,02 | 0.00 - 10.56 | 0.01 + 10.00 | 0.00 + 10.00 | 0.00 + 10,00
0.50 | -2.23 + 10.37 | 0.48 - 12.62 | 0.33 + 10.00 | 0.00 + 10.03 | 0.00 + 10.00
1.00 | -1.64 + 10.92 | 1.27 - 13.41 | 1.33 4 10.11 | 0.00 + 10,21 |=0.03 + 10.00
13
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Figure 2. Transverse Distribution of Surface Density of Current on Infinitely

Long Tube.
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oscillates in a transverse standing-wave pattern on the illuminated and sha-
dowed halves with zero current densities and maxinmum charge densities of op-

posite sign at the shadow boundaries.
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SECTION III
THE CYLINDER OF FINITE LENGTH; kh 2 1

The currents and charges induced on tubular cylinders of finite length
are more complicated in both their axial and transverse distributions than
those induced on cylinders that are infinitely long. This is a consequence
of multiple reflections at the open ends. The currents are again determined
from the boundary condition Et = 0 on the conductor but this now extends only
from z = =h to z = h and includes both the inside and outside of the tubular
surface, Two coupled intepral equations are obtained in Reference 1 for the
transverse Fourier conponents Kz(u[n) and Ke(uln), n=0,1, 2, ..., of the
total currents Kz(e,z) and Ke(e,z). Both of these components are present
with each polarization. Total currents are the sum of the currents on the
outside and inside surfaces., VWhen ka < 1, the inside of the tube is well be-
low cut-off for waveguide modes so that the inside current decreases rapidly
from the open end inward. Measurements given in Reference 2 have shown that the
outside current on a tube with open ends differs little from the current on
the same tube with ends closed by flat metal disecs. With the notation u = kz,

the equations for E-polarization from Reference 1 are:

kh )
2 [ Gylu,u'[m)K, (u'n) du' = (in/ka)C sin u + C,(n) ¢
0
kh kh
2 £ Gz(u,u'|n)Kz(u'|n) du' + (2n/ka) g Gze(u,u'|n)Ke(u'|n) du'

= C cos 6 + Cz(n) (8)

The equations for H-polarization in Reference 1 are the same with sin u replaced
by = cos u, cos u by sin u. The constant C is determined from the condition

K (u|n) = 0 at u = kh. For E-polarization, c, (n) = -(As i"/72 ka)J (ka),

(o (n) = 0; for H-polarization, C (n) =0, C (n) = —(ée i“'1/7 ka)J (ka). The
kernels are G,(u,u'[n) = (2/2, K2 a)[M (u-u (n) P (u + u’ln)l. G, (u,u'[n) =
(2/2 a)[Wz(u - u'ln) ¢ Mz(u + u'ln)], ,ze(u,u [n) = (Zk/nZO)[Mze(u -u'[n) =

Mze(u + u'|n)], where the upper sign is for E-, the lower sign for H=-polariza-

tion and € = 1, n= 03 €, = 2, n> 0, The M's are the inverse Fourier trans-

forms of ft (z[n) = -(wwuoa/Z)Jin'(aE)Hl(:i'(aE), M (z]n) = -(ra/2ueq)d) ) (a8)

w1 - . 2 (1) 2_ .2 2 th
H‘nl(aﬁ), Mze(t|n) (nng /2wE )J'n'(ng)ﬂln'(ag) with £ k £ The n
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order Fourier component Ke(uln) can be determined from Eq. (7) and used in
Eq. (8) to obtain Kz(uln). The total currents for E-polarization are, from

Reference 1,

) Cz(n)Kz(zln)cos nb

K _(6,z) =
z n=0
= A(kz) + B(kz)cos 8 + C(kz)cos 268 + D(kz)cos 36 + ... 9
Ke(e,z) = i nZI Cz(n)Ke(z|n)sin né
= {{B'(kz)sin 6 + C'(kz)sin 29 + D'(kz)sin 36 + ...] (10)

For H-polarization, the total currents are given in Reference 1 as:

Ke(e,x) = nzo Ce(n)Ke(xln)cos nd

Aﬂ(kx) + BH(kx)cos 8+ CH(kx)cos 28 + DH(kx)cos 38 + ... (11)

i z Ce(n)Kx(x|n)sin nd

K_(8,x)
X n=1

i[Bé(kx)sin 8+ Cé(kx)sin 20 + Dﬁ(kx)sin 30 + ...] (12)

The associated charge densities are given by
n(6,z) = -(i/c)[aKz(e,z)/kaz + (1/ka)8Ke(e,z)/ae] (13)

for E-polarization and from Eq. (13) with x written for z for H-polarization.
The number of terms required decreases with ka. When ka = 1, Kz(e,z) and

Ke(e,x) require four terms; when ka < 0.1, only two are needed.
1. E-POLARIZATION

The complex coefficients A(kz), B(kz), ..., (which are functions of ka
and kz) generally oscillate about the corresponding coefficients A,B,...,
for kh=w® with amplitudes that depend on ka. When ka=1, both A(kz) and
B(kz) have significant resonant amplitudes about the complex constants A
and B: C(kz) and D(kz) are significant but remain virtuallv constant at the
values C and D except very near the open end where thev decrease to zero.

Higher-order coefficients are negligible. Graphs of these quantities

17

L. »- . . . .« . . -
e it sttt sl TDRCEIPUE PSP STRRIDUPRIRIS S8 TS YO NS5 VLI DY AU .V WESau e ne;




when ka = 1 are in Fig. 13 and Fig. 14 of Reference 3 for kh=1.5w, in
Figs. 8 and 9 of Reference 4 for a range of values of kh between 1.5w and 3.5m.

Graphs of the Fourier coefficients when ka = 0,5, 0.1, 0.05, and 0.01 are in

Fig. 3 for kh = 1,57, It is seen that for ka = 0,50 with A = Ap + 1A/, B =
By + 1By, ...,
Kz(e,z) % A(kz) + B(kz)cos 6 + iCI(kz)cos 20 + DR(kz)cos 36 (14)

but now only AR(kz) has a large resonant amplitude of oscillation about AR’
AI(kz) and BR(kz) have only small oscillatory amplitudes, and BI(kz), CI(kz),
and DR(kz) are constant near the values BI‘ CI’ and DR for kh = = except very
near the ends, For ka < 0.1,

Kz(e,z) 2 A(kz) + BR(kz)cos ] (15)

AR(kz) and AI(kz) both have large amplitudes of oscillation about A

R
BR(kz) is equal to BR except very near the open end. The approximate formula,

and AI;

Eq. (15), 1is given in Reference 5. It is consistent with the corresponding rela-

tion for the axial current density induced on a prolate spheroid as given by
Taylor and Harrison in Reference 6.

A convenient approximate representation of the dependence of the Fourier
components on the axial variable involves the function e(kz) which is defined

in Reference 4 as follows:
e(kz) =1 , 0< |z <(h-4d ; e(kz) #sin[n(h - |z])/2d] ,
h-d<lz|l <n (16)

It is usually adequate to set d = a, where a is the radius of the tube. With
Eq. (16), Eq. (14) is approximated by A(kz) * (A + A cos kh)e(kz) + Ar(cos ke

- cos kh), B(kz) = (B + Bt cos kh)e(kz) + Br(cos kz - cos kh), CI(kz) = CIe(kz),
DR(kz) = DRe(kz) so that

ka = 0,50: Kz(e,z) = [A + Ar cos kh + (B + Br cos kh)cos & + iCI cos 28

+ Dp cos 36]e(kz) + (Ar + B_ cos 8) (cos kz - cos kh)
an
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Figure 3. The Complex Fourier Coefficients of the Axial Surface Density of
Current Kz(e,z) = A(kz) + B(kz)cos 8 + C(kz)cos 20 + D(kz)cos 36,
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Similarly, for Eq. (15),

ka < 0.1: Kz(e,z) s [A+ A_ cos kh + By cos 6le(kz) + Ar(cos kz - cos kh)

(18)
These formulas are valid when kh > n/2, The range kh < 7/2 is discussed in
the next section., The amplitudes of the resonant parts of the coefficients
are defined as follows: Ar = (1/2)[A(0) - A(m)], Br = (1/2)[B(0) - B(®)].

In Reference 5 and Fig. 4 are shown Fourier coefficients AR(kz), AI(kz)
and BR(kz) for long resonant and antiresonant tubes with ka = 0.01 and, re-

spectively, with kh = 3,57 and kh = 3n, Also shown are AR’ AI and BR for
kl‘-’.

Graphs of |Kz(9,z)| and |en(8,z)| as functions of kz as computed from
Eqs. (9) and (13) for & = 0° (shadow) and 6 = 180° (illuminated side) are
shown in Ref, (5] and in Fig., 5 for ka = 0.01 with kh = 3,57 at the top,
kh = 37 at the bottom. When kh = 3,5n, Kz(e,z) has the axial distribution
characteristic of a cylinder in a normally incident, E-polarized field at a
resonant length as described in Reference 7. The maxima are alternately larger
and smaller for the current and almost constant for the charge., Even with ka
as small as 0,01, the current on the illuminated side is not consistently
greater in magnitude than in the shadow as when kh = » (Fig, 2). Actually,
the amplitude is higher on the illuminated side than in the shadow only with
the larger maxima centered at kz = v and 37, lower with the smaller maxima
centered at 0 and 27n. The reason for this behavior is obvious from the
Fourier components in Fig, 4 where, at the top, BR cos 180° is added to
AR(kz) along the extremes centered at kz = 7 and 37 and is subtracted from
AR(kz) along the peaks centered at kz = 0 and 27, Since the current that
varies as e(kz) contributes nothing to the charge except in a short range of
length d ~ a near the open end, the charge density is practically rotation=-

ally symmetric everywhere outside this range.

The graphs of [Kz(e,z)l and |cn(e,z)| when kh = 37 are at the bottom of
Fig. 5. They show that near axial antiresonance IKz(180°,z)| > IKZ(0°,z)|for
all values of z, This follows from the Fourier components in the lower por=-
tion of Fig. 4. Since the oscillations in AR(kz) and AI(kz) are not large
enough to become negative, the component BR cos @ always combines with AR(kz)

to increase it when 8 = 180° and decrease it when 8 = 0°,
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Figure 4. Fourier Coefficients in Kz(e,z) = A(kz) + B(kz)cos 8 for Tubular
Cylinder in an E-Polarized Field. A(kz) = AR(kz) + i AI(kz),
B(kz) = BR(kz) + i BI(kz).
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The transverse distributions of |Kz(6,z)| as a function of 6 at selected
values of kz are shown in Reference 5 and in Fig. 6 for kh = 3.57 and kh = =
with ka = 0.01, 0,05, 0.1, and 0.5 and in Fig, 7 for kh = 37 and kh = = with
ka = 0.01. It is seen in Fig. 6 that for all values of ka the transverse
distributions at kz = m and 37 are comparable and increase from 6 = 0° to
8 = 180°, For kz = 0 and 2n the amplitude decreases as 8 is increased from
zero to reach a minimum at 6 = 180° for ka = 0,01, 0.05, and 0.1, at 8 = 110°
for ka = 0.5. In this last case the relative maximum at 6 = 180° is smaller
than the maximum at 6 = 0°. At kz = /2, 3n/2, and 57/2, the curves are all
similar and show an increasing amplitude from 6 = 0° to 6 = 180°. The graph
for kz = /2, kh = 3,57, is almost identical with that for all values of kz
when kh = », This follows from the fact that the resonant part of the cur-
rent when kh = 3,57, viz., cos kz, is zero at kz = n/2 and the forced parts
are essentially the same on the finite and infinite cylinders except very
near the end. In Fig. 7 for kh = 3x, all transverse distributions increase
from 6 = 0° to 8 = 180°. Those at kz = n/2, 37/2, and 57/2 again closely re-

semble the curve for kh = o,

Axial distributions like those at the top in Fig., 5 for kh = 3,57, ka =
0.01, and the associated transverse distributions in Fig. 6 are given in Reference
5 and Figs. 8 and 9 for kh = 1.51 - also a resonant length. In addition to
graphs for ka = 0.01, distributions are given for ka = 0.05, 0.1, and O.5.

These show the growing separation between curves for 6 = 0° and 8 = 180° as

ka is increased and serve to emphasize the fact that the transverse distribu-
tion of the axial current density Kz(e,z) induced in a conductor of finite
length by a normally incident, E-polarized plane wave depends not only on the
value of ka but also on kh and the location kz in the standing-wave patterm
along the conductor. It differs considerably from the transverse distribu-
tion in an infinitely long conductor at all but a few points. The charge
distribution is generally rotationally symmetric for ka < 0.1 except within
short distances of the open end where it is very far from rotationally symme-
tric even on very thin cylinders. Complete analytical solutions for the
axial distributions of the rotationally symmetric current Iéz) = 2na[Kz(z)]0
and charge per unit length q(z) = Zna[n(z)]o for electrically thin and long
cylinders have been derived by Chen and Wu in Ref=rence 8 for a normally inci-

dent, E-polarized incident field and by Chen in Reference 9 for an arbitrarily
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incident field. Graphs of the corresponding numerically calculated currents
I(z) are shown by Harrington in Reference 10. A complete theory for thin cylin-

ders that are not too long in an arbitrarily incident field has been derived
by King in References 11 and 12.

¥ The transverse component of current Ke(e,z) is very small except within
| distances d v a of the open end where it rises steeply to large values. Its

transverse distribution is proportional to sin 0.

¥ 2. H-POLARIZATION

The component of surface current Ke(e,x) on tubes of finite length
k. differs little from KB(B) for kx =« except within distances d~va of an
open end where it rises steeply. For each value of ka, the Fourier
4 coefficients given in table 1 are good approximations for cylinders of

finite length for all values of |kx]| < k(h-d) where d v a.
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SECTION IV
THE ELECTRICALLY SHORT AND THIN CYLINDER: ka < kh < 1 (BASED ON REFERENCE 5)

1. E~-POLARIZATION

The current densities Kz(e) and Kz(e,z) induced in tubular cylinders,
respectively, with infinite and finite lengths are well approximated by
K,(8) =4+ By cos 8 when kh = « and by Kz(e,z) = A(kz) + BR(kz)cos 8
when kh is finite provided ka < 0.1, The coefficient A = AR + iAI
and, so long as kh > 1, also the coefficient A(kz) = AR(kz) + iAI(kz) in-
R and BR(kz) re-

main constant and all higher-order coefficients decrease when ka is reduced.

crease in magnitude with decreasing ka. On the other hand, B

As can be inferred from Figs. 3 and 4, AR(kz) and AI(kz) oscillate, respec-
tively, about AR and AI when 7/2 < kh < @, Their amplitudes for each value

of ka are greatest when kh is at a resonant length, smallest when kh is at an
antiresonant length, When kh is reduced below the first resonance near kh =
/2, both AR(kz) and AI(kz) approach zero as kh + 0, This behavior is illustra-
ted in Reference 5 and Fig, 10 at kz = 0 for cylinders with ka = 0.01 and

0.05, AR(O), AI(O), BR(O) and CI(O) are all shown as functions of kh, It is
seen that AI(O) dominates when kh > 1, but decreases rapidly when kh is re-
duced so that it becomes equal to BR(O) at kh = 0.1667 for ka = 0.05 and at

kh = 0.1r when ka = 0.01. When kh is decreased below these values, BR(O)
exceeds AI(O) and actually dominates when kh < 0,067 with ka = 0.05 or kh < 0,04n
when ka = 0,01, Thus, the current that is very nearly rotationally symmetric
when ka = 0,01 and kh > 1 becomes equal and opposite on the illuminated and
shadowed sides of the cylinder when ka = 0.01 and kh is sufficiently small,

The three significant Fourier coefficients AR(kz), AI(kz), and BR(kz) are

shown in Fig. lla for ka = 0.05 and in Fig, 11b for ka = 0,01 as functions of
z/h with kh as the parameter. When kh < 7/2, the axial distributions have

the approximate form

A(ke) & a(0) S5 EE=COS Kb . (1) 2 Boe(ke) (19)

where A(0) = A + Ar and Ar is the complex amplitude of the oscillatory part
of the current, Note the rapid decrease in A(kz) as kh is reduced with con-
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Figure 10. Fourier Coefficients of Surface Density of Axial Current on
Tubular Cylinder; E-Polarization.
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stant ka and the almost complete constancy of the first-order term BR(kz) and
of the second-order term CI(kz), which is negligibly small.

The axial distribution of the magnitude and phase of the surface density
of current on the illuminated side, viz., Kz(180°.z) = A(kz) -~ BR(kz) is shown

as a function of kz in Reference 5 and in Fig. 12a for ka=0.05 and Fig. 12b
for ka = 0.01. The total current (sum of outside and inside currents), the
outside current and the inside current are shown. Since the latter decreases
rapidly inward from the open end, the total and outside currents differ sig-
nificantly only quite near the open end. The associated transverse distribu-
tions at z = 0, viz., Kz(e,O) as a function of 6 are in Fig. 13a for ka =
0.05 and ir Fig. 13b for ka = 0.01. Note that when kh = 0,2757 or 0,37, the
amplitude IKZ(S,z)I and the phase angle Gz are both quite constant around the
cylinder. As kh is reduced in steps to kh = 0.03757 with ka = 0.05 or kh =
0.01m with ka = 0,01, |Kz(6,z)l develops an increasingly deep minimum at 6 =
90° and a phase change approaching 180° from the illuminated side (8 = 180°) .
to the shadowed side (6 = 0°), When kh = 0,2757 or 0.37, the zero-order ro-
tationally symmetric component A(kz) dominates, when kh = 0,0375n or 0.01w,
the first-order term BR(kz)cos @ dominates. As kz approaches kh, the ampli-
tude of the current decreases but the dip at 8 = 90° is relatively even

deeper.

The multiple reflection of the rotationally symmetric, zero-order cur-
rent at an open end to generate the standing-wave distribution [Kz(z)]0 =
A(kz) involves only axially directed currents and charges [n(z)]0 that are
independent of 8. The reflection of the higher-order currents is quite dif-
ferent in that it involves not only axial currents like [Kz(e,z)]1 = B(kz)

x cos @ that are not rotationally symmetric, but also transverse currents

Ke(e,z) that are large particularly within short distances d ~ a of the end.
Actually, what 1s an open end for the rotationally symmetric zero-order cur-
rent is effectively a somewhat extended short-circuited end for the two con-
ductor, transmission-line-like first-order current. The transverse current

Ke(e,z) on an electrically thin cylinder is given by

Ke(e,z) = -Bi(kz)sin 8 (20)
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The real function Bi(kz) is shown on a logarithmic scale in Figs. l4a and 1l4b,
respectively, for ka = 0,05 and 0.01 as a function of z/h with kh as the
parameter, Ke(e,z) is quite small everywhere except near the open end where
it rises steeply to values comparable to those of the assoclated axial com-
ponent, Kz(e,z) = BR(kz)cos 8. In effect, the axial current approaches the
open end on the illuminated half of the cylinder (90° < 6 < 270°), circulates
around the cylinder as a transverse current with maxima at 8 = 90°, 270° near
the end, and then continues as an oppositely directed axial current on the
shadowed side (-90° < 6 < 90°), The transverse current is associated with a

rotationally asymmetrical distribution of charge.

Graphs of the magnitude lcn(e,z)f as a function of z/h are displayed in Ref-
erence 5 and in Fig, 15a for ka = 0.05 and Fig. 15b for ka = 0.0l. These
show that the charge density rises steeply to a high value at the open end.
The transverse distributions of |en(8,z)|, respectively at z/h = 0.2 and 0.8,
as functions of © with kh as the parameter are in Fig, 16a for ka = 0.05 and
in Fig. 16b for ka = 0.01., The associated phase angles en are in Figs. 17a
and 17b. It is seen that when kh = 0.357 for ka = 0.05 or 0.4n for ka = 0.01,
|cn(9,z)| is almost rotationally symmetric since the term A(kz) donminates,

On the other hand, when kh = 0,03757 for ka = 0.05 or 0.01lr for ka = 0.01,
Icn(e,z)[ develops a deep minimum at § = 90° and its phase changes from the
illuminated half into the shadowed half by nearly 180°. The entire effect is
much more pronounced near the open end at z/h = 0,8 (where the charge density
and transverse current are large) than near the center at z/h = 0.2 (where
the charge density and the transverse current are very small), Note that
when the cylinder is sufficiently short,nearly equal charge densities of op-
posite sign occur near 8 = 0° and 180°; these are associated with the trans-

verse currents Ke(e,z) ~ sin 8 that have maxima at 8 = 90° and 270°,

2. H-POLARIZATION

When ka < 0.1, the surface densities of current induced in tubular
cylinders are well approximated by Ka(é) = Ay + By cos 9 when kh = o
and by Ke(e,x) = AH(kx) + BH(kx)cos 8 when kh is finite. Except within
distances d v a of an open end, the coefficients are almost constant along
the tube so that AH(kx) & Ay = -1/20 = -2,65 mA/V, which is independent of ka

and kx, and BH(kx) = BH =- -12ka/2O = -1{5,3ka mA/V. Specifically when ka =
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Figure 1laa.
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0.01, B, = -10.053 mA/V; when ka = 0,05, B, = -10.265 mA/V. When kh > 1,
Au(kx) and BH(kx) with H=~polarization are small compared with A(kz) with E-
polarization. However, when kh < 0.1667 for ka = 0.05 or kh < 0,1y for

ka = 0.01, A(kz) becomes smaller than B(kz) = B_ = -2/20 = -5.3 mA/V which

R (1)

is comparable with AH' The reason 1is simple, AHR = -Hx is the circulating

current Ke required to set up an axial magnetic field that cancels the inci-
dent axially directed magnetic field in the perfectly conducting tube. Simi-

larly, BR = -ZHii) 1s the axial current xz(e) required to cancel the incident
(1
x

z-axils. These are the components of current that are required in the absence

transverse magnetic field H in the perfectly conducting cylinder along the
of all resonances to satisfy the boundary conditions. When the conductors

are sufficiently thin (ka < 0.1) and short (kh < 1), end-reflected and reson-
ant currents are small compared with the currents required to cancel the inci-

dent magnetic field in the perfectly conducting tube,

The axial currents Kx(e,x) generated in a cylinder parallel to the inci-

dent magnetic field by reflections at the open ends are given by
2 ’
Kx(e,x) isu(kx)sin 8 (21)
When ka < 0.1, lB&(kx)l is quite small compared with AH(kx). That is, the

axial current density is small compared to the transverse current density in

cylinders that are sufficiently thin and excited by an H-polarized field.
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SECTION V
COMPARISON WITH MEASUREMENTS

Since the theory of Kao in Reference 1 involves no assumptions other than
those implicit in the idealized model of a perfectly conducting cylinder with
zero wall thickness — which is well approximated by a thin-walled metal tube —
a comparison of theoretical results with measured ones serves primarily as a
means of checking the accuracy of the experimental techniques and apparatus
including especially probes. FExtensive very satisfactory comparisons have
been made and reported in References 3 and 4 on all aspects of the distribu-
tions in amplitude and phase of the current and charge densities on cylinders
with ka = 1 and electrical lengths between kh = 1,57 and 3.5, A similar but
less extensive set of measurements with ka = 0,05 and kh = 0,0375n, 0,0757 and
0.1757 has been carried out, A sample given in Reference 5 is shown in Fig. 18
for the axial and transverse currents on a tube with ka = 0.05 and kh =
0.175n. The graphs give the currents at cross sections quite close to the
open end where the axial and transverse densities have comparable magnitudes
and where the rotationally symmetric part of the axial current is substanti-
ally smaller than near the center. The measured graphs for le(e,z)! are for
the outside current which, as seen from Fig. 12a, has a significant relative
magnitude at z = h when ka = 0,05 and kh = 0.1757, The graphs in Fig, 18 in-
dicate that in the approximate formula, Kz(e,z) = A(kz) + BR(kz)cos 8, the
zero-order term A(kz) is smaller in magnitude than the first-order term BR(kz)
x cos 8. This is evident from the deep minima at 8 = 90° and 270° and the
associated phase change of approximately 180°. The measured variation with
8 is consistent with that shown in Fig. 13a at z = 0 where, however, the ro-
tationally symmetric term is relatively more important than near the open end.
The slow decrease of |Kz(e,z)| with z/h as the open end is approached agrees
with Fig. 12a for the outside current,

The measured transverse current shown at the top in Fig., 18 is in excel-
lent agreement with the approximate formula, Eq. (20), according to which
Ke(e.z) ~ sin 8, Note that Figs, 12a and l4a indicate that close to the open
end lKe(e,z)l and the outside part of IKz(e,z)l are comparable in magnitude.
The very rapid increase in ]Ke(e,z)l as the open end is approached is evident
from the family of curves in Fig., 18 and consistent with the theoretical re-

sults shown in Fig. l4a.
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SECTION VI
INTERSECTING ELECTRICALLY THIN CYLINDERS; ka < 0.1

The determination of the surface currents and charges on the intersect-
ing tubular cylinders shown in Fig. 1 1s advantageously treated in two parts
of which the first, relating to tubes with ka < 0.1, is considered in this
section; the second, dealing with cylinders with ka > 0,1, is discussed in a
later section., When ka < 0.1, the surface density of current induced in the
vertical tube by the normally incident E~polarized field is well approximated
by Kz(e,z) = A(kz) + BR(kz)cos 8 and Ke(e,z) % iB'(kz)sin 8. Except within a
radial distance of each open end, BR(kz) & BR and Ke(e,z) is negligible.
Similarly, the current induced in the horizontal member by the normally inci-
dent H-polarized field is well approximated by Ke(e,x) % Aﬂ(kx) + BH(kx)cos 8
and Kx(e,x) = iBﬁ(kx)sin 8. Here A“(kx) = AHR’ BH(kx) éiBH

negligible except within a radial distance of each open end. These are the

> and K (8,x) is

currents induced in the cylinders when individually isolated. They must now
be modified to include the effects of the mutual interaction by coupling and
the common junction, This can be accomplished by treating the zero-order ro-
tationally symmetric component and the higher~order components separately.
Such a separation is particularly useful when ka < 0.1 since then BR ] -2/20,
Ag * =1/7g, and B & -2ka/z) with 1/7; =Y = 2,65 mA/V when E(D) = 1 v/m.
Thus, BHI is negligible and BR and AHR are determined directly by the inci-
dent magnetic field in a manner independent of both the radius and the length
of the conductor. This means that the presence or absence of a junction has
only local significance insofar as the equal and opposite axial currents
given by BR cos 6 and the circulating currents AHR are concerned. Specifi-~
cally, these components are substantially the same for the intersecting and
the isolated cylinders. Accordingly, they can be determined for the latter

and subsequently combined with the rotationally svmmetric currents A(kz).

When the vertical conductor is electrically so short that BR >> IA(O)I.
the rotationally symmetric component of the current is negligible, It is
seen from Fig., 10 that BR > SIA(O)] when kh < 0,06r with ka = 0,05 and

kh < 0.04n when ka = 0.01 where h stands for h1 or hz. The same conclusion
is true for the horizontal conductor if it is electrically short. When the

rotationally symmetric component of current is negligible compared to the

equal and opposite first-order current with amplitude B, cos 6, the entire

R
current on that conductor can be determined as if it were isolated in the
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same incident field. If both of the intersecting conductors are electrically
short, the entire significant current on each is that obtaining when it is
isolated in the same incident field. This applies specifically to currents
induced by the sufficiently low-frequency components of an incident electro-

magnetic pulse.

When the conductors forming the cross are not electrically short, the
rotationally symmetric component of current A(kz) is dominant and can be de-
termined separately taking full account of end and junction conditions and of
inter-arm coupling. The contribution by the first-order component BR(kz)cos 8
can be combined with A(kz) to obtain the entire current Kz(e,z) 2 A(kz) +
BR(kz)cos 8, where BR(kz) = BR.
accomplished with so-called thin-wire theory which is very well developed.

It remains to determine A(kz). This can be

Since the zero-order current [Kz(z)]0 = A(kz) induced in the vertical
conductor is rotationally symmetric, it can be expressed in terms of the
total axial current Iz(z) = 2maA(kz). There is no such current induced in
the horizontal conductor by the incident field when its electric vector is
parallel to the vertical conductor as in Fig. 1(b). However, a current Ix(x)
is induced by charges on the vertical conductor. When the incident electric
field has a component parallel to the horizontal conductor as in Fig. 1(a),

b ¥ 0, it induces a current Ix(x). In order to determine both Iz(z) and
Ix(x), it is necessary to derive and solve the relevant coupled integral
equations subject to boundary conditions at the open tubular ends of the con-
ductors and at the junction, With reference to Fig, 1, the conditions on the

currents at the ends of the four arms are:
Lp(ohp) = Ip,(hy) = Ly (=2)) = L, (2)) = 0 (22)

The conditions at the junction must relate the currents and the charges per
unit length in the four arms. Strictly they must involve these quantities at
electrically short distances from the junction where they are still rotation-
ally symmetric. However, since with ka < 0.1, the electrical surface area of
the junction region is very small — of the order (ka)2 < 0.01 — its shape is
immaterial, and the total charge on 1its surface is negligible. Accordingly,
no significant error is introduced, insofar as currents and charges at elec-

trically very small distances from the junction are concerned, if it is as-
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sumed that each arm and its rotationally symmetric current and charge per

unit length extend to the junction point x = z = 0 as if concentrated along
the axes of the conductors. The junction conditions can then be imposed at
this point, For a vertical conductor with radius a; and a horizontal conduc- ;
tor with radius ag, they include the Kirchhoff condition on the currents, !

from Reference i3,
Ilz(O) - 122(0) + I3x(0) - be(O) =0 (23)

and the following three conditions on the charges per unit length, from Reference

7,

1, (0¥, = 4,(0)¥, = 4,(0)¥; = q, (0¥, (24)

where, for conductors at least a quarter wavelength long,

Y, = ¥

1 2 = 2[£n(2/kal) - 0.5772] ; Y,=Y = 2[ln(2/ka3) - 0.5772] (25)

3 4

Note that these parameters are independent of the lengths of the conductors.

For shorter conductors, the length is significant and

R
¥ o=y, =2 ln[(hlhz)l/zlal] 1/2

1 3 ¥y =¥, =2 (%)

3 4 /a,) (26)

When all radii are equal (a1 = a3, = a), ?1 = ¥ = ¥ = ¥ in Fq. (24) and

3 2 3 4
this reduces to the equality of charges per unit length, not the surface

density n = q/2ma.

The use of thin-cylinder theory with its significant simplifications is
an acceptable approximation only when the following inequalities are satis-

fied:

ka, << 1 << h (27a)

1

1]
[y
>3
[
-
[
-
N

ka. << 1 << ¢ (27v)

3

e
]
A
A

b

Significantly, these conditions actually contain the following:
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These are recognized to be the conditions previously imposed to assure that
the rotationally symmetric, zero-order component [Kz(z)]0 = A(kz) is large
compared to the first-order component [Kz(a,z)]1 & By cos 6. It follows that
when thin-cylinder theory is properly used, the significant currents are ro-
tationally symmetric. The analytical determination of the currents and
charges induced in intersecting thin cylinders by an electromagnetic wave
with the wave normal directed as shown in (a) of Fig. 1 and with the compon~

ents given in Eqs. (la,b) is outlined below.

The coupled integral equations that govern the rotationally symmetric
currents Iz(z) in the vertical conductor and Ix(x) in the horizontal one are
best obtained in a form that permits the convenient application of the end
and junction conditions in Egs. (22), (23) and (24) which involve the cur=-
rents and charges per unit length explicitly. Equations that are expressed
in terms of the scalar and vector potentials are inconvenient and have been
used, for example in References 14 - 16, with conditions requiring the contin-
uity of the potentials at the junction instead of the charge per unit length.
Since the potentials are in any case continuous, such a procedure is redun-
dant and merely rearranges the form of the equations without taking correct

account of the behavior of the charge per unit length,

The required equations in the desired form are readily derived, as in
References 17 and 18, from the one-dimensional boundary conditions on the sur-

face of the conductors. These are

Ez(z) = E;i) - 3¢(z)/3z - ijz(z) =0 , -hl <z< h2 (29a)
E (x) ~ EY) - 30(x)/o%x - JuA (x) =0 , -2, < x <2 (29b)
x X X ’ 1 - - 2

When the integrals for the scalar potential ¢ and the components of the vec-
tor potential A are substituted in Egs. (29a,b), the following pair of sinmul-
taneous integral equations is obtained for the unknown currents Ix(x) and
Iz(z). Yote that q(z) = (j/m)alz(z)/az, q(x) = (j/w)alx(x)/ax.

hZ h2 12
/ Iz(z')K(z,z') dz' - l%-g% [ [/ a(z"k(z,z') d2' + [ q(x")K(z,x') dx'}
-h k - -5
1 1 1
= ~(3er/uu)ELD (2) (30a)
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2 L h

2 2 2
I Ix(x')K(x,x') dx' - 1%-5; ( [ a(x")R(x,x") dx' + f q(z")K(x,z') dz']
k

4 % =y

(1)

- -(j aﬂ/WUO)Ex

(30b)

where Eii)(z) and Eii) are given in Eqs. (la,b). The kernels are defined as
follows: K(z,z') = exp(-ijz)/Rz with Rz = [(z - z')2 + ai]llz, K(x,x') =

exp(-ijx)/Rx with Rx = [(x =~ x')2 + a§]1/2; K(z,x') = exp(-ijcz)/Rcz with

- (.2 12 2,1/2, " - o 12 02
Rcz {z- + x'"" + a3] ;s K(x,z'") exp(-ijcx)/Rcx with ch [x" + 2'" +

2.1/2
31]1/ . Note that K(z,z') = KR(z,z') + jKI(z,z') with KR(z,z') = cos(kRz)/Rz,
KI(z,z') - -sin(kRz)/Rz. The equations (30a,b) are to be solved for Iz(z)
and Ix(x) subject to the four end conditions in Eq. (22), and the four junc-

tion conditions in Eqs. (23) and (24).

Analytical solutions of these equations have been obtained when a; = 3,

= a under two sets of conditions which encompass the most significant aspects
of the possible distributions of current and charge in a relatively simple

form. They are first, from Reference 10, a normally incident field with the
electric vector parallel to the vertical conductor as in Fig. 1(b) and arm
lengths that are arbitrary and, secondly, from Reference 11, a generally inci-
dent field as in Fig. 1(a) but with arm lengths that are all equal, More
general cases than these two are readily formulated and evaluated by analyti-
cal or numerical methods. Zero~ and first-order currents and charges have

been calculated for a wide range of arm lengths in Reference 17; only zero-order
currents are given in Reference 18. Measured currents and charges are in
Reference 19. Details of the analytic solution and explicit formulas for the
coefficients are given in Reference 16. The method used is iterative with simple

zero-order terms used to obtain the first-order solution.

Zero-order terms alone are generally adequate for very thin conductors
with electrical arm lengths not near integral multiples of #/2 and kh > 1,
For normal incidence with the electric field parallel to the z-axis, the

zero-order currents are given in Reference 17 as:
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[Ilz(z)]O = —AW[sin k(h1 + z) + sin k(h2 - z) - sin k(h1 + hz) + F(ll,lz)

X cos khz(cos kz - cos khl)] . -h1 <z <

[IZz(z)]O = -AlU[sin k(h1 + z) + sin k(h2 - 2) - sin k(h1 + hz) + F(ll,lz)

X cos khl(cos kz - cos khz)] » 0<z<h
[I3x(x)]0 = AW(cos kh, = cos khl)sin k(f.l + x)/cos kzl .

[IAx(x)]O =-AW(cos kh, - cos khl)sin k(l2 - x)/cos k2

2 2 !
where
A = ~(I6nE D) fuug?) = (-j/60ﬂ?)(E§g)A)
W= [sin k(hl + h2) + F(zl,lz)cos kh1 cos khz]
and

F(zl,zz) = tan kzl + tan klz

The associated charges per unit length are:

la,(2) 1y = (~ikAW/w) [cos k(h; + z) = cos k(h, - z) - F(

la,(2)]y = (=3kAW/w) [cos k(h  + 2) - cos k(h, - z) = F(L
la5(x) ]y = (JkAW/w)(cos kh, - cos khj)cos k(%) + x
[q,(x)], = (jkaW/w)(cos kh, - cos kh))cos k(f, - x

Note that at the junction, x = z = 0,

[qi(O)]0 = (-jkAW/w) (cos kh, - cos khz) s 1=1,2

1
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0 (31a)
2 (31b)
-2 <x s 0 (31¢)
0 <xc< 22 (31d)
(32)
-1 (33)
(34)
1,lz)cos kh2 sin kz]
(35a)
1,lz)cos kh1 sin kz]
(35b)
Y/cos kll (35¢)
)/cos klz (35d)
s 3, 4 (36)
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The charges per unit length on all arms have the same value as the junction
is approached. This is zero only when h1 = h2. (When higher-order terms are
included, Eq. (36) does not vanish when khl and khz differ by nv.) In this
case, Egqs. (31b,c) and (35c,d) show that all currents and charges vanish at
all points on the horizontal cylinder, In the absence of a component of the
electric field along the horizontal conductor, currents and charges are in-
duced only when there is a nonzero charge on the junction at z = 0, With a
normally incident field this occurs only when the junction is at the center
of the vertical cylinder, Currents that are excited on the horizontal con-
ductor by periodically varying charges at x = 0 are necessarily oppositely
directed near x = 0., The discontinuity in the vertical current at the junc~-
tion is Ilz(o) -122(0) = -AW(tan kll + tan ld.z) (cos kh2 -~ cos khl). It is, of
course, the negative of the discontinuity in the horizontal current, I3x(0) -
Iax(O),so that Kirchhoff's law in Fq. (23) is obeyed.

The distributions of current and charge per unit length on the vertical
member include one set of terms characteristic of the cylinder in the ab-
sence of the transverse member and a second set of terms that takes account
of the interaction with the horizontal cylinder. The former are more easily
recognized when expressed in terms of the coordinate z, with origin at the
center of the vertical tube and the half-length h = (h1 + hz)/2. With these
it follows directly that in Egs. (31a,b), sin k(h1 + z) + sin k(h2 - z)

- sin k(h1 + hz) = 2 gin kh (cos kzo - cos kh) and in Eqs. (35a,b), cos k(h1
+ z) - cos k(h2 ~ z) = 2 sin kh sin kzn. Thus, these terms represent the
simple shifted cosine distribution of the current and sinusoidal distribution
for the charge per unit length but referred to an arbitrarily located origin
for z. They provide a zero charge per unit length at the center, but a non-
zero value at the junction so long as this is not centered. It is this
charge which generates the currents on the horizontal cylinder. The second
set of terms in Eqs. (3la,b) and (35a,b) is multiplied by the coupling factor
F(zl,lz) that takes account of the horizontal currents on the cross. In Eqs.
(31a,b) they are shifted cosines with respect to each arm length; they pro-
vide a discontinuity at the junction so that there can be currents in the
side arms in accordance with Kirchhoff's law in Eq. (23). In Fqs. (35a,b)
the terms multiplied by F(!l,lz) are simple sinusoids which provide no charge

at the junction. The currents and charges in the horizontal arms consist of
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one term only and this is multiplied by the coupling coefficient, cos kh2 -
cos khl. Note that the current in the horizontal member is distributed in
the form sin k(2 - le) which is quite different from the shifted cosine dis-
tribution in the vertical member, The latter is induced by the uniform inci-
dent electric field, the former by charges at the junction that induce oppos-

itely directed currents in the two arms.

When the electrical length of any of the four arms is at or near an in-
tegral multiple of n/2, first-order terms must be included. Sample distribu-
tions of current and charge for such cases are discussed later in this sec-

tion.

In order to induce currents on the side arms, it is necessary either to
have a component of the incident electric field along the horizontal element
or to maintain a nonzero charge on the vertical cylinder at the junction.

When the junction is at the center of the vertical member, this can be accom-
plished by non-normal incidence as indicated in Fig., 1(a). When the incident
field in Eqs. (la,b) induces currents in a cross with equal arms, the effect
of non-normal incidence in maintaining charges at the junction is separatad
from the effect of unequal arm lengths already determined for normal inci-
dence. The properties of currents induced by uniform electric fields and by

those with a progressive phase shift can be examined individually.

The solution of Eqs. (30a,b) with a, =a; =a and h2 = hl = 11 = 22 = h

is relatively simple in zero-order. The currents on both vertical and hori-
zontal elements consist of parts that are even in the coordinate, i.e.,
Ieven(-v) = Ieven(v)' and parts that.are odd, i.e,, Iodd(-v) = -Iodd(v) where
v = x or z. The four currents are conveniently represented as follows in

Ref. (18]:

(1,25 = Ty eq(@ = I4q(2) » ~h <2 <0 (37a)
[Izz(z)]0 = Ieven(z) + Iodd(z) y 0<z<h (37b)
[T3,00) = T oan®® = T qq(¥) » R S x <0 (37¢)
(L(®]g = T @) + I 4(x), 0<xch (37d)
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where the even and odd parts of the currents are

I (z) = -(A cos ¥)

even

cos kz cos qh - cos qz cos kh
[ sin 8 cos kh

sin k|z| sin gh - sin q|z] sin kh
Iodd(z) = -(3/2) (A cos w)[ sin © sin kh

+

sin © cos kh

cos kx - cos kh
Ieven(x) -(a sin W)[ cos kh ]

- .| sin gh - sin kh cos O sin k(h - [x|) ]
Iodd(x) (3/2) (A cos U)[ sin 0 sin kh ][ cos kh

cos kz sin qh - sin q|z| cos kh - sin k(h - |z]|)cos @ ]

(38a)

(38b)

(38¢)

(384)

The associated charges per unit length are presented in the same sequence as

the currents. Note that odd charges are derived from even currents and vice

versa.
(a,(2) ]y = =9.44(2) + 9 yan(?
la,(2) ) = q_44(2) + a,,.,(2)
(a3(x) ] = =q 4q(x) + a (%)
[, (05 = 95940 + Gopen(®)
. where

sin k|z| cos qh - sin q|z| cos kh cos ©
cos w)[

qodd(z) = (Jk/w)(a sin O cos kh

cos kz sin qh - cos gz sin kh cos O
sin 0 sin kh

even

q (z) = (k/2w) (A cos w)[

)

(39a)

(39b)

(39¢)

(39d)

(40a)




, sin k]z| sin qh + cos qz cos kh cos © - cos k(h - |z|)cos ©
sin O cos kh

(40b)
sin klx'
qodd(x) = (jk/w)(A sin V) [—;m-] (40c¢)
- sin qh - sin kh cos 6 ][ cos k(h - Ix|)
qeven(x) (k/2u) (A cos W)[ sin © sin kh ][ cos kh (404)

At the junction, x = z = 0, and with i = 1, 2, 3, 4,

(0,01 = [0, (D1, = (k/2u) (A cos ¥) [Si“i*‘ =_sinkh cos 9] (41)

even sin © sin kh

The conditions for zero charge per unit length in each arm as the junction is
approached are seen to be y = n/2 and O = v/2, When ¢ = v/2, the electric
vector has no component along the vertical conductor and, since it is con-
stant in phase along the horizontal tube, the charge per unit length at its
center vanishes. When © = 7/2, the wave is normally incident with the com-

ponent Eéi)

(1)
Ey

cos ¢ parallel to the vertical conductor, the component
sin y parallel to the horizontal one.

The several terms in the currents in Eqs. (37a-d) and in the charges per
unit length in Eqs. (3%9a~d) are readily identified. The current Ieven(z) in
Eq. (38a) and the first fraction in Iodd(z) in Eq. (38b) are, respectively,
the even and odd currents induced in the vertical cylinder in the absence
of the horizontal conductor (Refs. 11 and 12). Similarly, Ieven(x) in
Eq. (38¢c) 1s the same as the current induced in the horizontal cylinder when
the vertical one is absent. The associated charges are given by the corre-
sponding terms in Eqs. (40a-c). UNote that qodd(z) in Eq. (40a) and qodd(x)
in Eq. (40¢) are zero at the junction so that they are not coupled either to
each other or any other charges in the intersecting cylinders. The entire
current Iodd(x) in Eq. (384) 1s excited by charges at the junction. Its dis-
tribution but not its amplitude is independent of ©. The second fraction in
Iodd(z) in Eq. (38b) is the current in the vertical conductor generated by
the oscillations in the horizontal cylinder. It includes a term, - sin k(h
- |z|)cos ©, with a distribution like that in I_4q(x) but there are other,

O-dependent terms that contribute to the fairly complicated distribution.
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However, as can be seen from the corresponding terms in Eq. (40b), the as-
sociated charges vanish at the junction, z = 0. In the vertical cylinder all
of the charges at the junction are given by the first fraction in Eq. (40b);
they are generated by the part of the odd current that would remain if

the horizontal cylinder were removed (Refs. 11 and 12). Thus, the

charges at the junction associated with the part of the current that is as-
soclated with the isolated vertical cylinder excite the charges and associ-
ated currents in the horizontal cylinder to satisfy the three junction condi-
tions on the charges. This resulting modification in the charges on the ver-
tical cylinder is associated with new currents that combine with the currents

on the horizontal cylinder to satisfy Kirchhoff's condition at the junction,

When the junction of intersecting cylinders is not centered on the ver-
tical element and the exciting wave is not normally incident, both the even
and odd components of the current on the vertical cylinder have associated
charges at the junction which generate odd currents in the horizontal member
in a manner readily understood from a combination of the effects described in
conjunction with Eqs. (3la~d), (35a-d) on the one hand, and Egs. (37a-d),
(39a-d) on the other hand. The corresponding zero-order currents and charges
can be derived from solutions of the general integral equations, but they are
sufficiently complicated to make a simple interpretation difficult, In gen-
eral, first-order solutions must be obtained from these equations in order to
have a quantitative picture of the currents and charges on the intersecting
cylinders. This is true particularly near and at resonance. For example in
the cross with all arms equal, resonant oscillations along the horizontal and
vertical cylinders and from one vertical arm to one horizontal arm all occur
at the same frequency according to zero-order theory. Actually, an oscilla-
tion from one vertical to one horizontal arm involves quite different coup~
ling between the halves of the oscillating circuit so that it occurs at a
frequency somewhat different from that along a horizontal or vertical cylin-
der. Since zero~order theory does not include the effects of coupling, it
cannot distinguish between the two cases. It is the first-order terms that

take account of mutual interaction.

Sample first-order distributions of current and charge per unit
length on three different, thin-cylinder crosses are shown in Figs. 19 through
21. Specifically, in Fig. 19, k(h1 + h2) = 47w + 2n = 67, an antiresonant
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Figure 19.
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length with a minimum of current and a minimum of charge per unit length at

the junction, kz = 0. Since kll - klz

self-resonant, but is only weakly excited owing to the minimum of charge per

= 7, each side arm is individually

unit length at the junction. Note that the maximum of Ix(x) on the horizon-
tal arms is less than 0,02 of the maximum of Iz(z) on the vertical member,
In Fig. 20, k(h1 + h2) = 31 + 7 = 47, again an antirescnant length but now
with a current maximum and a charge minimum at the junction. Since again
kll = klz = 7, the side arms are self-resonant but are only weakly excited
owing to the relatively small charge at the junction. Almost all of the
large current in the vertical cylinder continues through the junction with
very little entering the side arms, In Fig, 21, k(h1 + hz) = 57, a resonant
length with a minimum of current and close to a maximum of charge per unit

length at the junction, kz = 0. With k&, = k& = 7, each side arm is indi-

vidually self-resonant and is now strongiy excited by the large charge at the
junction. As a consequence, the maximum of Ix(x) is almost as great as the
maximum of Iz(z). Measured currents and charpes per unit length on electri-
cally thin crossed cylinders over a ground plane are shown in Reference 19. They
are in general agreement with the graphs in Figs. 19 through 21, but are not
directly comparable since they involve the image of the cross. In general,

when the incident electric field is parallel to the vertical cylinder, the
currents excited in the side arms are largest when these are individually
self-resonant and are located at a charge maximum in the standing-wave dis-

tribution along the vertical conductor.
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SECTION VII
INTERSECTING ELECTRICALLY THICK CYLINDERS: ka > 0.1

When intersecting cylinders are not electrically thin, the simplifying
approximations that are permitted when ka < 0.1 and that underlie thin-cylin-
der theory are invalid. The concepts of a total axial current and a charge
per unit length are not useful since the zero-order, rotationally symmetric
components contribute only fractionally to the surface densities and even for
them the electrically large cross section introduces highly significant phase
dif ferences in the interaction of the elements of current and charge distri-
buted around a circumference due to the finite velocity of propagation of
electromagnetic effects. These are negligible when ka << 1 so that the cur-
rents and charges can effectively be treated as though concentrated along the
axis for purposes of calculating fields. Furthermore, transverse components
of current and associated charges (which are ignored in thin-cylinder theory
because they are negligible when ka << 1 and kh > 1) are very important with
E-polarization and completely dominate with H-polarization as ka approaches
and exceeds one. There is no way of determining either the transverse varia-
tion of the axial current or any part of the transverse current from thin-

cylinder theory.

The conditions on the currents and charges at the intersection of thin
cylinders are expressed in terms of fictitious, rotationally symmetric, total
currents and charges per unit length at a junction that has so small a sur-
face area that its shape and the charges on it can be ignored. The thin-cyl-
inder junction conditions are designed to give the correct currents and charges
per unit length at distances of a radius or two from the junction, but they
provide no detailed information about the current and charge demsities very
near to and on the surfaces of the junction. Actually, they have no valid
application when ka is not quite small. The absence of rotational symmetry
in the axial currents, the presence of significant transverse currents, the
fact that the surface area of the junction region itself is not electrically
small and carries large currents and charges, and the dependence of the sur-
face density of charge on the spatial rates of change of both axial and trans-
verse components of current all combine to make the thin-cylinder junction
conditions meaningless when ka > 0,1, The conditions at the junction of elec-
trically thick cylinders are contained in the general requirement that the

component of the electric field tangment to all parts of the perfectly conduct-
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ing surfaces of the junction vanish, 1In the sharp grooves at the junction
lines of the intersecting tubes the component of the electric field perpendi-
cular to the surface must vanish since the normal to one of the intersecting
surfaces has a component tangent to the other surface. It follows that the
charge density along the bottoms of the grooves must be zero and with it the
component along the groove of the vector surface density of current. Thus, this
latter must be directed perpendicularly across each groove. These conditions
actually apply equally to intersecting electrically thick or thin cylinders
and must be used for all values of ka if the distributions of current and
charge on and very near the junction are to be determined. When ka << 1, a
knowledge of these distributions is not required to determine the total rota-
tionally symmetric currents and charges per unit length not too close to the

junction.

No analytical or numerical determinations of the surface currents and
charges on intersecting electrically thick cylinders are available. However,
extensive measurements of these quantities have been reported in References
20 and 21. They include three lengths for the horizontal cylinder and two lo-
cations along the vertical tube. Graphs of both the axial and transverse
components of current density and of the charge density are available for
ka = 1 and ka = 2, Representative and very instructive examples for ka = 1
are in Figs. 22 and 23 which show contour maps of the surface densities of
charge, respectively, on the vertical and horizontal cylinders when the
length of the former above the ground plane is kh = 3,5n, k& = k&, = 27, and

the junction of the intersecting axes is at khl = 2,57, Thelaxialzstanding-
wave patterns on the illuminated (9 = 180°) and shadowed (8 = 0°) sides are
clearly shown in Fig, 24 when k& = 7, kh1 = 2,57 and when k& = 1,57 with kh1
= 2n, For purposes of comparison the distribution along the vertical cylin-

der when isolated is also shown.

These illustrations and numerous others for the phases and amplitudes
of the surface densities of current and charge in References 20 and 21 lead to
the following general conclusions for intersecting cylinders with ka > 1:
1) The distributions of current and charge densities are much less sensitive
to changes in the lengths of the cylinders when they are electrically thick
than when electrically thin, 2) The distribution of the charge density on an

electrically thick cylinder is more sensitive to the nature of the incident
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field and the presence, dimensions, and location of an intersecting cylinder
than is the distribution of current. 3) The charge density on the vertical
member when excited by an incident E-polarized field has significantly differ-
ent distributions when the incident field is not plane, when the horizontal
member is absent, its location is changed, or when the arm lengths are varied.
The current density is much less affected, 4) The distribution of the charge
density on the horizontal cylinder in an B-polarized field is insensitive to
the location of its intersection with the vertical member of the cross so
long as the arms are equal in length. On the other hand, the amplitude of
the axial standing-wave pattern as a function of 8 is sensitive to the length
of the arms. 5) As on the single cylinder, the axial current density on the
vertical cylinder is substantially a superposition of forced and resonant
components. The changes from the distribution along the single tube when an
intersecting cylinder is present in different locations and with different
arm lengths are due primarily to shifts in the relative phases of the forced

and resonant components,

When ka = 2, the transverse distributions are significantly more compli-
cated since transverse Fourier components of order 2 are large in addition to
those of orders 1 and 0, The axial distributions are very similar to those
with ka = 1., Sample distributions of the surface density of charge on the
vertical cylinder with kh = 3,57 are in Fig. 25, on the horizontal cylinder
with k2 = 27 in Fig, 26. The intersection of the axes is at khl = 2,5m,
Additional graphs are in Reference 21.

In general the distributions of current and charge on the surfaces of
intersecting electrically thick cylinders are quite similar to those on each
of the individual cylinders alone in the same field. The relative amplitudes
of the standing waves on the illuminated and shadowed sides of the vertical
cylinder may differ considerably, but the standing-wave patterns are signifi-
cantly changed only quite near the junction region. Thus, a knowledge of the
distributions of current and charge density on single cylinders is of great
value in the understanding and interpretation of these quantities on inter-

secting cylinders and in the rough approximation of their actual values,
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SECTION VIII

INTERSECTING ELECTRICALLY THICK CYLINDER (ka=1)
AND FLAT PLATE (BASED ON REFERENCE 22)

When the horizontal cylinder in the cross in Fig., 1 is replaced by a
flat plate as shown in Fig., 27, an improved model of an aircraft is achieved.
However, there are no available analytical or numerical determinations of the
surface densities of current and charge induced on the surfaces of this struc-
ture when illuminated by a plane wave. Indeed, these quantities have not
been evaluated for a single flat plate or strip of finite length. Fortunate-
ly, measured data are at hand, from Reference 22, for a cross that is erected on
a ground plane and illuminated by a normally incident plane wave with the
electric vector along the axis of the vertical cylinder. The measured data
apply to a cylinder with kh = 3,57 and ka = 1, with a horizontal intersecting
plate that has equal arms. FEach of the two flat plates has the electrical
length k& = 1,57 so that it extends to k(2 + a) = 1,827 from the vertical
axis; the electrical width of the plate is kL = 0.5w, its thickness is kT =
0.054n,

The magnitude of the measured charge density n(6,z) on the cylinder is
presented in the contour diagram of Fig. 28, This shows a standing-wave pat-
tern very nuch like that on the cylinder when alone, The effect of the hori-
zontal plate is very small except in its immediate vicinity where a deep min-
imum surrounds it. The corresponding diagram for the charge density n(x,z)
on the flat plate is shown in Fig., 29 for the illuminated side. The diagram
for the shadowed side is in Reference 22. It is not shown here since it differs
little from Fig. 29, Note that the standing-wave pattern along the edges has
maxima (of opposite sign) at the corners and a half-wavelength from them.
There is a deep minimum along a line increasingly displaced from the center
line toward the trailing edge of the "wing'" as the central cylinder {s ap-
proached. There is, of course, a null along the groove of the junction line

between the end of the plate where it joins the cylinder.

The current density along the cylinder is predominantly axial except
quite near the open end, where large transverse currents occur. The magni-
tude of Kz(e,z) is shown in Fig. 30. The distributions resemble those along
the isolated cylinder and the cylinder with an intersecting cylinder in gen-
eral form, The effect of the transverse plate is seen to be very small —

even smaller than the effect of a transverse cvlinder. The transverse plate
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Figure 27.
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Diagram of Flat Plate Crossed with an Electrically Thick Cylinder

Illuminated by a Normally Incident, Plane-Wave Field.
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Figure 28. Contour Diagram of Measured Magnitude of Surface Density of Charge
In| om Tubular Cylinder with Crossed Flat Plate Centered at
kh1 = 2.57, kh = 3.57; k& of Plate = 1.5w, kL = 0.57, kT = 0.054%.
(|n| in Arbitrary Units.)
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Figure 30. Measured Magnitude of Surface Density of Axial Current on Vertical
Cylinder with Crossed Flat Plate; ka = 1, kh = 3.57, khl = 2.5m;

ki = 1.5 , kL = 0.57, kT = 0.0547. (lle in Arbitrary Units.)
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is excited directly by the incident field which is H~polarized for it. The
plate is wide enough so that Kz(x,z) is significant. 1Its magnitude on the
illuminated and shadowed sides is shown in Fig. 31 as a function of k(x - a)
at seven values of kz spaced across the width of the plate. It is seen to be
zero at the junction with the cylinder and to increase very gradually to
large values at the open edge. It is substantially greater cn the illuminated
side than in the shadow. The magnitude of the associated component Kx(x,z)
is shown in Fig. 32, also as a function of k(x - a). This is seen to have a
standing-wave pattern to match that for the charge density in Fig. 29. The
outward current has a maximum across the grooves at the junction and at a
half-wavelength out toward the open edge, where it vanishes. The amplitude
of Kx(x,z) as a function of kz is greatest at the long edges where kz = 2,57
*+ 0.257 and smallest along the center of the plate. More complete data, in-

cluding graphs of the phases, are in Reference 22.
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SECTION IX
NON-ORTHOGONALLY INTERSECTING CYLINDERS

The determination of the currents and charges on the surfaces of conduc~
tors that intersect at angles A other than 90° either as a continuing cross as
in Reference 16 or to achieve the swept-wing configuration in Fig. 33 can be
accomplished for electrically thin cylinders by a generalization of the ana-
lytical procedure described for orthogonal conductors. All of the thin-cyl-
inder conditions previously imposed when A = 90° must be satisfied and, in
addition, a restriction on the angle of intersection A must be enforced.

This is needed in order to keep the junction region electrically small enough
to preserve the validity of the assumption that the total charge on its sur-

faces is negligible. The new condition is:
|sin A] >> ka (42)

where A 1is the angle between adjacent arms. When A = 90°, this reduces to

the previously imposed condition, ka << 1.

The integral equations for the currents in the swept-wing configuration
shown in Fig. 33 are derived in the same manner as those for the orthozonal
cross but several additional terms and integrals occur since the crossed con-
ductors are now coupled inductively as well as capacitively. In order to
permit the ready correlation with the equations for the orthogonal cross, the
notation shown in Fig. 33 is used. As before, the vertical member extends
from z = —h1 to z = h2 with the junction at the origin, The arms are taken
to be equal and of length 2 with the variable s ranging from s = =% to s = 0
along the left arm and from s = Q to s = £ along the right arm. Note that
when 4 = 90°, £ becomes x and the entire notation reduces to that of the or-

thozonal cross.

The boundary conditions requiring the vanishing of the tangential com-
pecnent of the electric field on the surfaces p = a of the conductors, each
with radius a, now have the form:

(1)

Ez(z) = Rz

- 20(2)/32 - JuA (2) = 0

e
&

A
N

1A
=2

(1)

z -2 <5 < (43b)

-

Es(s) = - cos A - a¢3(s)/as - ij3s(s) =0
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(1)

z

Es(s) = E cos A - 3¢4(s)/3s - ijds(s) =0 ; 0<s <% (43¢)

for a normally incident field, E(i) = Iini). The time dependence ejwt

is
used. A consequence of symmetry is that the currents and charges, and the
vector and scalar potentials on the two side arms satisfy the following re~

lations:

I3s(-s) = -Iés(s) . q3(s) = qa(-s) : ABS(-S) = -Aas(s) , ¢3(-s) - ¢4(s)

(44)
Hence, it is necessary to determine only Ilz(z)’ I2z(z)’ and Ids(s)° With
the relations (44), the vector and scalar potentials in Eq. (43a) are:
h2 )
A (2) = (ug/am{ / I(z")K(z,z") dz' + 2 cos & f I_(s")K(z,s',8) ds'} (45)
--h1 0
h2 £
¢(z) = (1/4mey){ [ a(z"K(z,z") dz' + 2 [ q(s")K(z,s',8) ds'} (46)
—h1 0
-jkR .
where K(z,z') = e z/Rz with Rz = [(z = 2"+ a2]1/2 and K(z,s',s) =
~jkR__,
e z8 /stv with Rogr = [22 + s'2 ~ 2zs' cos A + 32]1/2. Similarly, in Eq.
(43c):

L
A, (s) = (uoléﬂ){£ I_(s")[K(s,s') + K(s,s',8)cos 28]ds’

h
2
+ cos & f Iz(z')K(s,z',A) dz'} “n
-hl
L fy
oa(s) = (1/4ﬂco){f q(s') (¥ (s,s') + K(s,s',8)]ds’ + f q(z")K(s,z',8) dz'}
0 =h
1 (48)
‘ij ‘ij '
where K(s,s') = e S/Rs with Rs = [(s = s')z + aZ], K(s,s',8) = e §8 /Rss'
with Rss' = [s2 + 3'2 - 28s' cos 24 + a2]1/2 and K(s,z',8) = e sz',Rsz'

with Rsz' - [s2 + z'2 - 2|s|z' cos A + 32]1/2. Vhen Eqs. (45) - (48) are sub-

stituted in Eqs. (43a) and (43c¢), the following simultaneous integral equations
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in the currents and charges are obtained:

L) L

f Iz(z')K(z,z') dz' + 2 cos & f Is(s')K(z,s',A) ds'
0
1

-

h
2 2
- QeGP [ alz)K(z,z") dz' + 2 [ a(s)K(z,s',8) ds')
~h, 0
= ~(ganfanELD (49)
h')

L 2

f Is(s')[K(s,s') + K(s,s',A)cos 24)ds' + cos B f Iz(z')K(s,z',A) dz'

0 -h1 .

L 2

- (jw/kz)(alas){f q(s") [R(s,s") + K(s,s',8)]1ds’ + f q(z")K(s,z',4) dz'}
0

_hl

= -(j&n/muo)Eii) cos A (50)
With 3/2z = -3/9z' in K(z,z'), 3/3s = =3/3s' in K(s,s'), 3/3s = 3/as’ in
K(s,s’',A), and integration by parts, it follows that:

)

10(3/3z) [ q(2")K(z,z") dz' = ~jw(a(h,)K(z,h,)) - q(-hl)K(z,-hl)]
-hl
h
2 o] 2
- f [a*zz(z')/az'“ 1K(z,2z") dz' (51)
-h
1

L
jw(3/3s8) j q(s'")[K(s,s") + K(s,s',8)]ds' = -juq(2) [K(s,L) - K(s,2,8)]
0

L2 2
- [ 1271 (s") /38" 1 [K(s,8") - K(s,s',A))ds' (52)
0

with these expressions, the intepral equations (49) and (50) become:

hy

{ [3212(z')/3z'2 +1P1_(2")]K(z,2") d2' - Fy(z,0) = Fy(2) = Fu(z,0)

-hl -

2
. dark () (53)
wuo z




[
é [azxs<s')/as'2 + kzls(s')][K(s,s') - K(s,8',8)1ds" = F,(s,8) = F (s,0)

2
- jark (1)
- Fa(s,A) - Fs(s,A) - —;;E— Ez cos A
where
L
F,(2,8) = 2ju(3/3z) [ q(s")K(z,s',A) ds’
0
F3(z) = -jw[q(hZ)K(Z.hz) - q(-hl)K(Z.-hl)]
2 %
FA(z,A) = 2k“ cos A é Is(s')K(z,s',A) ds'
and
hy
F,(s,8) = jw(3/9s) [ a(z")K(s,z',8) dz’
=h
1l

F,(s,8) = 2jua() [K(s,2) = K(s,2,8)]

h,

FA(S,A) = k2 cos A f Iz(z')K(s,z',A) dz'

-hl

2
Fg(s,8) = K'(1 + cos 28) [ I_(s")K(s,s',8) ds'
0

(54)

(55a)

(55b)

(55¢)

(56a)

(56b)

(56¢)

(56d)

With electrically thin conductors, the real parts of the kernels K(z,z')

and K(s,s') have very sharp peaks at z' = z and s' = s so that

2

(32/32% + kz)Iz(z) 2 Akl + W—I[Fl(z) + Fy(z,8) + Fo(2) + F,(z,0)]

(32/352 + kz)Is(s) & Ak2 cos A + W-I[Fl(s,A) + Fz(s,A) + F3(s,A)

+ F,(s,4) + Fs(s,A)]

where
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h

2 2 2 .2
Fy(z) = =3 [ 131, (2" /32" + K71 _(2")]K (z,2") dz' (59)
-hl
L2 2 .2
Fy(s,8) = - é [3°1,(s") /38" + K°I_(s"))[K(s,s") = K (s,s',8)]ds’ (60)
and
by
¥= [ Kp(0,2") dz' = 2[&n(2/ka) - 0.5772] (61a)
-hl
or
L L
vy = [Kp(0,8') = K (0,s',8)]ds" = / Kp(0,s') ds' = 2{fn(2/ka) = 0.5772]
0 -2

(61b)

The value of ¥ in Eqs. (6la,b) 1is valid when kh1 > /2, kh2 > n/2, k& > n/2.
In Eqs. (57) and (58), A --(jan/quW)Eig) = (=1/60v¥) (E21) where 1 1s the

wavelength,

The solutions of Eqs. (53) and (54) include the simple solutions of the
homogeneous equations and sums of particular integrals. The formulas for the

currents are:

Ilz(z) = A[Ci cos kz + C; sin kz + 1 + Hh(z,A)/V] 3 -h1 <z<0 (62a)
Izz(z) = A[Cé cos kz + Cg sin kz + 1 + Hh(z,A)/W] s 0<z< h2 (62b)

Iés(s) = -135(-3) = A[CA cos ks + Cz sin ks + (1 - cos ks)cos &
+ Hz(s,A)/W] ; O0<s<t (62¢)

where the particular integrals occurring on the right are evaluated with the

formula:
-1 %
T, (z) = k[ F (u)sin k(z = u) du (63)
0
Specifically for Fl(z), Fi(u) - Akz. This gives Tl(z) s ] - cos kz. The
term cos kz can be incorporated with C' cos kz, leaving 1 as in Eq. (62a).

For Fl(s,A), Fi(u) = Ak2 cos A and Eq. (63) gives Tl(s,A) = (1 = cos ks)cos &
as shown in Eq. (62c). The terms Hh(z,A) and Hl(s,A) contain the other
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4 i
particular integrals. Specifically, Hh(z,A) - Tl(z) + X Ti(z,A) and
- i=m2
5
H,(s,A) = 2 T,(s,A) where T, is given by Eq. (63), F,6(z) and F_(s,A) are
L 1=1 i i 1 17

given by Egs. (59) and (60); Fi(z,A) and Fi(s,A) with 1 > 1 are given by Eqs. j
(55a=-¢) and (56a-d). The C's are arbitrary constants to be evaluated from
the end and junction conditions. The charges per unit length corresponding
to Eqs. (62a-c) are obtained with the equation of continuity, BIz(z)/az +
juwq(z) = 0 and aIs(s)/as + jwq(s) = 0. They are:

ql(z) = (-jAk/m)[Ci sin kz - CI cos kz - jHﬁ(z,A)/mW] (64a)
qz(z) = (-jAk/w)[Cé sin kz - Cg cos kz - jHﬁ(z,A)/mW] (64b)
qa(s) = q3(-s) = (-jAk/w)[Cz sin ks - CZ cos ks = jHi(s,A)/wV] (64c)

where H' is the derivative with respect to the argument kz or ks.

Since H _(0,4) and H,(0,A) vanish at z = s = 0, they are not involved in
L
the application of the junction conditions, 112(0) - 122(0) - 2143(0) = 0 and
- - - M e " ("= "= O
ql(O) q2(0) q3(0) qA(O). These give Cl C2 C3 CA C" and

v - M - ' = - = = - =
C1 C2 ZC“ 0. The end conditions, Ilz( hl) IZz(hZ) I3s( 2) Ias(l)

= 0, must be applied to whatever order of solution is required. For a zero-

order solution, they give

[Ilz<-h1)]0 = A[Ci cos kh) - c" sin kh, + 1] = 0 (65a)

1

(1,,(h,)]1, = A[C) cos kh, + C" sin khy + 1] = 0 (65b)

2

[Ias(l)]0 = -[I3s(-£)]0 - A[Cz cos k& + C" sin kf + (1 - cos k&)cos A) = O

(65¢)
These equations can be solved for C!, 1 = 1, 2, 4, in terms of C" and
substituted in Ci -Acé - ZCA = 0 to obtain:
sec kh1 - sec kh2 - 2(1 - cos k&)sec k& cos A
c" = (66)

tan kh1 + tan kh2 + 2 tan kL
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Once C' and C" have been determined, the zero-order currents are known. They

are:

[Ilz(z)]o = ~AW{sin k(h1 + z)

+

sin k(h, = 2z) - sin k(h1 + h2) + 2 cos kh2

x [tan k& (cos kz cos kh.,) + cos A (1 - cos k&)sec kR

x sin k(h1 + 2)1} (67a)

+

[Izz(z)]0 = -AW{sin k(h1 + z) sin k(h, - z) - sin k(h1 + hz) + 2 cos kh1

x [tan k& (cos kz - cos kh

;) = cos & (1 - cos kf#)sec k2

x sin k(h2 z)]} (67b)

[145(5)]0 = AW sec k&{(cos kh, - cos khz)sin k(2 - s) -~ cos A sin k(h1 + hz)

1

x (cos ks = cos k) - 2 cos A& cos kh1 cos kh2 [sin k(& - s)

+ sin ks - sin k&]} (67¢)

where

W = [sin k(h1 + hz) + 2 tan k& cos kh. cos khz]-1 (68)

1

Note that 138(-5) = -IAs(s)' With A = 90°, these expressions reduce to those

previously obtained for the currents in an orthogonal cross when 21 = 12 = 2,

The zero-order charges per unit length corresponding to the currents in Egs.
(67a-c) are:

[ql(z)]0 = (-JkAW/w){cos k(h1 + z) - cos k(h2 - z) = 2 cos kh2 [tan k& sin kz
- cos A (1 - cos ki)sec kL cos k(h1 + 2)]} (69a)
(ay(2)]; = (-JkAW/w){cos k(h, + z) = cos k(h, = z) = 2 cos kh; [tan ki sin kz

- cos A (1 - cos ki)sec k& cos k(h2 -2)]} (69b)
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[qa(s)]o = (-jkAW/w cos k&){(cos kh, - cos khz)cos k(2 = 8) =~ cos A

1

x sin k(h1 + hz)sin ks + 2 cos A cos kh1 cos kh2 [cos ks
- cos k(2 - s)]} (69¢)

Note that q3(-s) = q4(s) and that, with i =1, ,,., 4, the charge per unit
length on each conductor at the junction is:

[qi(O)]o = (-jkAW/w){cos khl - cos kh, + 2 cos A cos kh, cos kh2 (1 - cos k&)

2 1

x sec k&} (70)

The effect of the presence of the side arms is especially significant
when their electrical length k& 1s #/2 or m., Although the zero-order formu-
las for the currents and charges per unit length are not quantitatively ac-
curate when khl, kh2 and k& are all integral multiples of #/2, it is possible
to obtain useful, relatively simple, expressions when k& is 7/2 or = but khl
and kh2 are not, Thus, when kf + /2, tan k% + » and from Fq. (68), W =+
1/(2 tan k& cos khl cos khz). If this is used in Eqs. (67a~c) and (69a-c),
finite zero-order currents and charges per unit length are obtained. They
are:

[Ilz(z)]o = -A sec khl {cos kz - cos kh, + cos A sin k(hl + z)] 3

1
“hy <z < 0 (71a)
[Izz(z)]0 = -A sec kh2 [cos kz = cos kh2 - cos A sin k(h2 ~-2)]
0<zcsh, (71b)
cos kh1 ~ co8 kh2 - ¢cos A sin k(h1 + hz)
[I&s(s)]o = A 2 cos kh1 cos kh2 cos ks
~ cos A (cos ks + sin ks -~ 1)) ; 0 <s < 2 (71¢c)

<z<0 (72a)
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[qz(z)]0 = (jkA/w cos khz)[sin kz + cos A cos k(h2 ~2z)] 30<z < hz (72b)
cos kh1 - cos kh2 - cos A sin k(h1 + h2)
[q,(s)1y = (3kA/w) 7 cos Khy cos K, sin ks
+ cos A (cos ks - sin ks) 3 0<s <t (72¢)

These formulas reveal that when low-impedance arms with k& = v/2 are
attached to the vertical member, they completely suppress the zero-order cur-
rents and charges that are induced in it in the absence of the arms. These
are given by the first three terms in Eqs., (67a) and (67b), the first two
terms 1n Eqs. (6%a) and (69b)., When & = 90°, the amplitude of the currents
in the horizontal arms is determined by the discontinuity in the vertical
current at the junction, viz., |sec kh2 - sec khlf. This can range from zero

and kh,. When & # 90°, the vertical

1 2
arms carry additional, oppositely directed currents that continue into the

to two, depending on the values of kh

side arms. Also iInduced in the side arms are currents that are independent
of the vertical member and simply oscillate in each arm. For example, in
arm 4 the added current has the form cos A (cos ks + sin ks - 1) which is
zero at s = 0 and at s = L and has associated with it a charge per unit
length with the form cos 4 (cos ks - sin ks)., This has the magnitude cos A
at both s = 0 and s = £,

When k% = w, tan k& = 0 and W = 1/sin k(hl + hz). It follows that the

zero-order currents and charges are:
[IIz(z)]O = =Alsin k(h1 + z) + sin k(h2 - z) = sin k(hl + hz) - & cos A
X cos khz sin k(h1 + 2z)]/sin k(h1 + hz) (73a)

[Izz(z)]0 = =A(sin k(h1 + z) + sin k(h2 -~ z) - sin k(h1 + hz) + 4 cos A

X cos khl sin k(h2 - z)]/sin k(hl + hz) (73b)
[Ibs(s)]0 = ~A{[cos khl - cos kh2 - 4 cos A cos kh1 cos khZ]
x gin ks/sin k(h1 + h2) - cos A (cos ks + 1)} (73c)
90

.
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[ql(z)]0 = (=jkA/w)[cos k(h1 + z) - cos k(hl = 2z) = 4 cos A cos kh

2
% cos k(h1 + z)]/sin k(h1 + hz) (74a)
lay(2)] = (~3kA/w)[cos k(h, + 2) = cos k(h; = 2) - & cos & cos kh,
X cos k(h2 - z)]/sin k(h1 + hz) (74b)
[9,()]g = (~3kA/w){[cos kh) - cos kh, = 4 cos & cos kh cos kh,]
x cos ks/sin k(h1 + hZ) + cos A sin ks} (74¢)

These are quite different from those with k& = v/2, When k& = 7 and A = 90°,

the zero-order currents and charges per unit length on the vertical member

are actually the same as when the side arms are absent. The zero-order cur-

rents on the horizontal members vanish at the junction; they oscillate in the
self-resonant mode, excited by the charges maintained at the junction by the
vertical currents. These are proportional to |cos kh1 - cos khzl. When A #
90°, additional, oppositely directed currents are induced on the vertical
members and these continue into the side arms where they are distributed as a

shifted cosine, (1 + cos ks)cos A, There is also an added term in the self-

resonant current proportional to sin ks.

More accurate currents and charges per unit length can be obtained for
all arms and lengths by evaluating the first-order terms obtained by the sub-
stitution of the zero-order currents and charges in the particular integrals
contained in Hh(z,A) and Hz(s,A). Since thev cannot all be evaluated analyti-
cally, numerical integration is necessary. The first-order terms are needed

especially when kh1 and kh2 are integral multiples of =/2.

The formulas derived for the currents on the swept-wing cross are useful
1> 1, khz > 1, and

ki > 1. When one or more of the arms is electrically short, the rotationally

only within the limits of thin=cylinder theory and when kh

symmetric part of the current does not dominate, The transverse Fourier com-
ponents of the first order with a transverse variation cos ¢ ultimately dom-
inate as ka is reduced. The surface currents associated with this mode are

readily determined as explained in an earlier section. They are proportional
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to the local tangential magnetic field on each conducting surface and require

no end or junction conditiomns.

The distributions of current and charge per unit length can be deter-
mined on the swept-wing structure for other than normally incident fields in
the general manner described for the orthogonal cross with equal arms. This
is true only for electrically thin structures with angles that satisfy Eq.
(42). The current and charge densities on swept-wing structures composed of
an intersecting electrically thick cylinder and an electrically wide flat

plate can be studied experimentally in the manner described for 4 = 90°.
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SECTION X
PENETRATION OF FIELDS INTO THE INTERIOR THROUGH AN OPEN END

The intensity of an electromagnetic field that penetrates into the in-
terior of a conducting tube through a small aperture in the cylindrical sur-
face is proportional to the densities of current and charge on the unbroken
surface at the location of the aperture. The calculation of these fields is
treated in References 23 and 24. A closely related but analytically quite
different problem is the field that penetrates into the interior at the open
tubular end or that enters an aircraft through a conductively open, radome-
covered nose. The currents and charges excited by such a field on the inner
surfaces of a tubular cylinder have been calculated directly from the general
analysis of Kao in Reference 1 which provides the current and charge densities
on both the inside and outside surfaces of a tubular cvlinder illuminated by
a normally incident field., Examples of the currents on the inside surface
are shown in Figs. 12a and 12b for electrically thin cylinders with ka = 0,05
and 0.01. Although these inside currents decrease exponentially inward from
the open end, they are always equal to the outside currents at the end and are,
therefore, significant even when ka 1s very small., When ka is not small but
is below the cut-off for waveguide modes in the interior, the situyation is
quite similar but the distance of penetration with significant amplitude is
greater. This is shown for a tube with ka = 1 in Reference 3 where in Fig. 17
is shown the inside axial current, in Fig. 18 the inside transverse current,
and in Fig, 19 the inside charge density. These are all significant within
distances of the open end comparable with the radius of the tube. When the
inside radius exceeds the cut-off value for a waveguide mode in the interior,
this is excited at the open end as described and discussed in Reference 21.
Since the frequency spectrum contained in an electromagnetic pulse extends
over a wide range of values of ka, the three cases with ka < 0.1,

0.1 < ka < kac, and kac < ka must be included in a consideration of currents,
charges, and fields inside the open or radome-covered end of a tubular con-

ductor.
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SECTION XI
SUMMARY AND CONCLUSION

The currents and charges induced on crossed metal structures by an inci-
dent electromagnetic pulse are best investigated in three frequency ranges.
At very low frequencies when ka < kh < 1, the only significant currents are
those associated with the first-order transverse Fourier component., They are
directly proportional and comparab’e in magnitude to the component of the in-
(1)
t
determined at each point on the surface since thev are independent of all

cident magnetic field H tangent to the metal surface., They are readily
dimensional parameters. At somewhat higher frequencies when ka < 0.1 and

1 < kh < «, the dominant currents and charges are the total axial ones de-
rived from the rotationally symmetrical, zero-order Fourier components, viz.,
1= 2ﬂa[K]O, q = 2ﬂa[n]0. They are governed by the well developed, quasi-
one-dimensional integral equations of thin-wire theory with the associated
end and junction conditions which have strong effects on the axial distribu-
tions. When ka > 0.1, first- and higher-order Fourier components become im=-
portant in the axially directed current density and associated charge density.
In addition, significant transverse currents with associated charges must be
considered. They combine with the axial currents to maintain three-dimen-
sional standing-wave patterns on the surfaces. In general, the distributions
on intersecting conductors are quite similar to those on each member when
isolated in the same incident field except quite near and in the junction re-

gion,
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